banner



2x X 2 1 Derivative

DERIVATIVE OF ABSOLUTE VALUE FUNCTION

Let |f(10)| be an accented value part.

Then the formula to notice the derivative of |f(x)|  is given below.

Based on the formula given, let us find the derivative of |x|.

|x|' = [x/|ten|](ten)'

|x|' = [10/|10|](ane)

|x|' = ten/|x|

Therefore, the derivative of |x| is x/|x|.

Let y = |ten|'.

Then, nosotros accept y = x/|x|.

In y = ten/|x|, if we substitute x = 0, the denominator becomes naught.

Since the denominator becomes null, y becomes undefined at 10 = 0

Permit us substitute some random values for ten in y.

when x = -3,

y = -three/|-3| = -3/3 = -1

when x = -2,

y = -2/|-2| = -2/2 = -1

when x = -1,

y = -1/|-one| = -1/1 = -1

when x = 0,

y = 0/|0| = 0/0 = undefined

when x = ane,

y = 1/|one| = 1/1 = 1

when 10 = 2,

y = 2/|2| = 2/2 = ane

when 10 = 3,

y = 3/|three| = iii/3 = one

Let u.s.a. summarize the to a higher place adding in table.

Now, based on the table given to a higher place, we can get the graph of derivative of |ten|.

Discover the derivative of each of the following absolute value functions.

Example 1 :

|2x + 1|

Solution :

|2x + one|' = [( 2x + 1)/ |2x + one|] (2x + 1)'

= [(2x + one)/|2x + one|]( 2)

= 2( 2x + ane)/|2x + i|

Example ii :

|x3 +  ane|

Solution :

| ten3 + ane|' = [( xthree + 1 )/ | ten3 + 1 |] ( x3 + 1 )'

= [( x3 + i )/| xiii + 1 |]( 3x ii)

= 3xtwo ( x3 + 1 )/| x3 + 1 |

Example iii :

|x|3

Solution :

In the given function | ten| iii , u sing chain dominion, first we have to notice derivative for the exponent 3 and and then for |x|.

(| x| 3)' = {3| x|2 } [ x /| x |] (x)'

= {3| 10|2 } [ 10 /| x |] (i)

= 3x| 10|

Instance four :

|2x - 5|

Solution :

|2x - v|' = [( 2x - 5)/ |2x - v|] (2x-five)'

= [(2x - 5)/|2x - 5|](2)

= two( 2x - 5)/|2x - 5|

Example 5 :

(10 - 2)2  + |ten - 2|

Solution :

{ (x - two) 2  + |x - 2|}' = [ (10 - two) 2 ]' + |x - 2|'

= 2 (x - 2)  + [(x - ii)/|x - 2|]( x - two)'

= 2 (x - 2)  + [(x - 2)/|10 - 2|] (one)

= 2 (ten - 2)  + (10 - 2)/|ten - two|

Example 6 :

3|5x + 7|

Solution :

[3|5x+7|]' = 3 [(five x + 7)/ |5x + 7|] (5x+7)'

 = 3 [(5 x + 7)/|5x + 7|]( 5)

= 15(5 10 + i)/|5x + 7|

Example 7 :

|sinx|

Solution :

|sinx|' = [sinx / |sinx|] (sinx)'

= [sinx/|sinx|] cosx

= (sinx  cosx)/|sinx|

Case viii :

|cosx|

Solution :

|cosx|' = [cosx / |cosx|] (cosx)'

= [cosx/|cosx|] (-sinx)

= -(sinx  cosx)/|cosx|

Example nine :

|tanx|

Solution :

|tanx|' = [tanx / |tanx|] (tanx)'

= [tanx/|tanx|] sec2 x

=  (sec2 x  tanx)/|tanx|

Case 10 :

|sinx + cosx|

Solution :

|sinx + cosx|' = [(sinx + cosx) / |sinx + cosx|] (sinx + cosx)'

= [(cosx + sinx) / |sinx + cosx|] (cosx - sinx)

= (cos2 x - sinii x) / |sinx + cosx|

= cos2 x/|sinx + cosx|

Kindly postal service your feedback tov4formath@gmail.com

We always appreciate your feedback.

© All rights reserved. onlinemath4all.com

2x X 2 1 Derivative,

Source: https://www.onlinemath4all.com/derivative-of-absolute-value-function.html

Posted by: adamsexperearie.blogspot.com

0 Response to "2x X 2 1 Derivative"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel